Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
PLoS One ; 18(10): e0292448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37796781

RESUMO

Metabolic syndrome is a multifactorial disease with high prevalence worldwide. It is related to cardiovascular disease, diabetes, and obesity. Approximately 80% of patients with metabolic syndrome have some degree of fatty liver disease. An adenosine derivative (IFC-305) has been shown to exert protective effects in models of liver damage as well as on elements involved in central metabolism; therefore, here, we evaluated the effect of IFC-305 in an experimental model of metabolic syndrome in rats induced by a high-fat diet and 10% sucrose in drinking water for 18 weeks. We also determined changes in fatty acid uptake in the Huh-7 cell line. In the experimental model, increases in body mass, serum triglycerides and proinflammatory cytokines were induced in rats, and the adenosine derivative significantly prevented these changes. Interestingly, IFC-305 prevented alterations in glucose and insulin tolerance, enabling the regulation of glucose levels in the same way as in the control group. Histologically, the alterations, including mitochondrial morphological changes, observed in response to the high-fat diet were prevented by administration of the adenosine derivative. This compound exerted protective effects against metabolic syndrome, likely due to its action in metabolic regulation, such as in the regulation of glucose blood levels and hepatocyte fatty acid uptake.


Assuntos
Síndrome Metabólica , Humanos , Ratos , Animais , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/prevenção & controle , Síndrome Metabólica/induzido quimicamente , Sacarose/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Adenosina/metabolismo , Glucose/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo
2.
FASEB J ; 37(8): e23079, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37410022

RESUMO

Genistein is an isoflavone present in soybeans and is considered a bioactive compound due to its widely reported biological activity. We have previously shown that intraperitoneal genistein administration and diet supplementation activates the thermogenic program in rats and mice subcutaneous white adipose tissue (scWAT) under multiple environmental cues, including cold exposure and high-fat diet feeding. However, the mechanistic insights of this process were not previously unveiled. Uncoupling protein 1 (UCP1), a mitochondrial membrane polypeptide responsible for dissipating energy into heat, is considered the most relevant thermogenic marker; thus, we aimed to evaluate whether genistein regulates UCP1 transcription. Here we show that genistein administration to thermoneutral-housed mice leads to the appearance of beige adipocyte markers, including a sharp upregulation of UCP1 expression and protein abundance in scWAT. Reporter assays showed an increase in UCP1 promoter activity after genistein stimulation, and in silico analysis revealed the presence of estrogen (ERE) and cAMP (CRE) response elements as putative candidates of genistein activation. Mutation of the CRE but not the ERE reduced genistein-induced promoter activity by 51%. Additionally, in vitro and in vivo ChIP assays demonstrated the binding of CREB to the UCP1 promoter after acute genistein administration. Taken together, these data elucidate the mechanism of genistein-mediated UCP1 induction and confirm its potential applications in managing metabolic disorders.


Assuntos
Adipócitos Bege , Camundongos , Ratos , Animais , Ativação Transcricional , Adipócitos Bege/metabolismo , Genisteína/farmacologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Branco/metabolismo , Termogênese/genética , Elementos de Resposta , Tecido Adiposo Marrom/metabolismo
3.
Food Funct ; 14(11): 5048-5061, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37161495

RESUMO

Obesity is an increasing global public health problem. A strategy to treat obesity is the use of functional foods. Edible and medicinal mushrooms contain diverse bioactive compounds showing important antihyperlipidemic, antioxidant, and prebiotic properties. We analysed the effects of adding (10%) of Pleurotus ostreatus (Po, basidiomata), Ganoderma lucidum (Gl, basidiomata), or Ustilago maydis (Um, galls), milled, to a high fat plus saccharose diet (HFD + S) for 6 months in a model of obesity with Wistar rats. We assessed weight gain, body composition, lipid parameters, endoplasmic reticulum stress (proteins and inflammatory markers: BiP, XBP-1, JNK, p-JNK, TNF-α), and adiponectin in subcutaneous adipose tissue (SAT). The consumption of edible and medicinal mushrooms decreased weight gain (-17.2-30.1%) and fat mass (-23.7-43.1%), maintained fat-free mass, reduced levels of serum biochemical parameters (TC: -40.1-44.1%, TG: -37.7-51.6%, LDL-C: -64.5-71.1%), and prevented adipocyte hypertrophy (-30.9-36.9%) and collagen deposition (-70.9-73.7%) in SAT. Compared with the HFD + S group, mushroom consumption by Wistar rats significantly reduced the expression of proteins associated with endoplasmic reticulum stress and inflammation (BiP: -72.2-88.2%; XBP-1: -71.5-81.8%; JNK: -71.2-90.0%; p-JNK: -37.3-81.0%; TNF-α: -80.7-91.5%), whereas significantly increased adiponectin protein expression (246.4-654.2%) in SAT. These effects outperformed those obtained through the commercial lipid-lowering drug atorvastatin, contributing synergistically to prevent further obesity-related dysfunctions, such as insulin resistance derived from inflammation and ER stress in adipose tissue. Bioactive compounds from edible, functional and medicinal mushrooms represent new emerging therapies for obesity treatments using natural products.


Assuntos
Agaricales , Pleurotus , Reishi , Ratos , Animais , Ratos Wistar , Pleurotus/química , Adiponectina , Fator de Necrose Tumoral alfa/farmacologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação/tratamento farmacológico , Aumento de Peso , Estresse do Retículo Endoplasmático , Lipídeos/farmacologia
4.
J Ethnopharmacol ; 312: 116522, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37080365

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chaya (Cnidoscolus aconitifolius (Mill.) I.M. Johnst) is an important component of the regular diet and traditional medicine of indigenous communities in Mexico. Customarily, Chaya is consumed as a beverage made of macerated leaf, cooked, or prepared in teas or infusions to empirically treat obesity, diabetes, gastrointestinal disorders, and kidney stones. The beneficial effects of Chaya can be attributed to the presence of protein, dietary fiber, vitamins, and especially polyphenols, which regulate mitochondrial function. Therefore, polyphenols present in Chaya extracts could be used to develop novel strategies to prevent and treat metabolic alterations related to mitochondrial dysfunction in the muscle and liver of subjects with obesity, type 2 diabetes, and cardiovascular diseases. However, limited information is available concerning the effect of Chaya extracts on mitochondrial activity in those tissues. AIM OF THE STUDY: The aim of this study was to evaluate the antioxidant capacity of an aqueous extract (AE) or mixed (methanol/acetone/water) extract (ME) of Chaya leaf and their effect on C2C12 myotubes and primary hepatocyte mitochondrial bioenergetics and fatty acid oxidation (FAO). MATERIALS AND METHODS: Total polyphenol content and antioxidant activity were determined using the Folin-Ciocalteu method and the oxygen radical absorbance capacity assay, respectively. The effect of AE and ME from Chaya leaf on mitochondrial activity and FAO of C2C12 myotubes and primary hepatocytes was evaluated using an extracellular flux analyzer. RESULTS: The AE and ME from Chaya leaf exhibited antioxidant activity and a polyphenol content similar to nopal, another plant used in Mexican traditional medicine. AE significantly (p < 0.05) decreased the maximal respiration and spare respiratory capacity (SRC) of C2C12 cells, whereas ME had little effect on C2C12 mitochondrial function. Conversely, ME significantly (p < 0.05) decreased SRC in primary hepatocytes, whereas AE increased maximal respiration and SRC at low doses (5 and 10 µM). Moreover, low doses of Chaya AE significantly (p < 0.05) increased AMPK phosphorylation, acyl-coenzyme A oxidase protein abundance, and palmitate oxidation in primary hepatocytes. CONCLUSION: The AE of Chaya leaf increases mitochondrial function and FAO of primary hepatocytes, indicating its potential to treat hepatic mitochondrial dysfunction underlying metabolic diseases.


Assuntos
Antioxidantes , Diabetes Mellitus Tipo 2 , Humanos , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Fibras Musculares Esqueléticas , Mitocôndrias , Hepatócitos , Polifenóis/farmacologia , Obesidade , Metabolismo Energético , Ácidos Graxos
5.
PLoS One ; 18(4): e0283605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37022999

RESUMO

Well-characterized and standardized extracts of a Mexican genotype of Ganoderma lucidum (Gl), a medicinal mushroom, cultivated on oak sawdust (Gl-1) or oak sawdust plus acetylsalicylic acid (Gl-2, ASA), have been shown to exert antioxidant, hypocholesterolemic, anti-inflammatory, prebiotic, and anticancer properties. However, toxicity analyses still need to be carried out. Different doses of these Gl-1 or Gl-2 extracts were administered to Wistar rats for 14 days in a repeated dose oral toxicity study. We assessed the external clinical signs, biochemical parameters, liver and kidney tissues, injury and inflammation biomarkers, gene expression, inflammatory responses, proinflammatory mediators, and gut microbiota. Gl extracts had no significant adverse, toxic or harmful effects on male and female rats compared to the control groups. No injury or dysfunction were recorded in the kidney or liver, as there were no significant abnormal variations in organ weight, tissue histopathology, serum biochemical parameters (C-reactive protein, creatinine, urea, glucose, ALT and AST transaminases, TC, LDL-c, TG, HDL-c), urinary parameters (creatinine, urea nitrogen, albumin, the albumin-to-creatinine ratio, glucose), injury and inflammatory biomarkers (KIM-1/TIM-1, TLR4, and NF-кB protein expression; IL-1ß, TNF-α and IL-6 gene expression), or the expression of genes linked to cholesterol metabolism (HMG-CoA, Srebp2, Ldlr). Gl-1 and Gl-2 extracts showed prebiotic effects on the gut microbiota of male and female Wistar rats. Bacterial diversity and relative bacterial abundance (BRA) increased, positively modulating the Firmicutes/Bacteroidetes ratio. The ASA (10 mM) added to the substrate used for mushroom cultivation changed properties and effects of the Gl-2 extract on Wistar rats. The no-observed-adverse-effect-level (NOAEL) was 1000 mg/kg body weight/day of Gl-1 or Gl-2 extracts. Clinical trials are recommended for further exploring the potential therapeutic applications of studied extracts.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Reishi , Ratos , Masculino , Feminino , Animais , Ratos Wistar , Reishi/química , Creatinina/metabolismo , Fígado/metabolismo , Rim/patologia , Extratos Vegetais/toxicidade , Prebióticos , Gastroenteropatias/patologia , Glucose/metabolismo , Biomarcadores/metabolismo , Ureia/metabolismo
6.
J Gastroenterol Hepatol ; 38(5): 791-799, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36807933

RESUMO

BACKGROUND AND AIM: Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease. Increasing evidence indicates that the gut microbiota can play an important role in the pathophysiology of NAFLD. Recently, several studies have tested the predictive value of gut microbiome profiles in NAFLD progression; however, comparisons of microbial signatures in NAFLD or non-alcoholic steatohepatitis (NASH) have produced discrepant results, possibly due to ethnic and environmental factors. Thus, we aimed to characterize the gut metagenome composition of patients with fatty liver disease. METHODS: Gut microbiome of 45 well-characterized patients with obesity and biopsy-proven NAFLD was evaluated using shot-gun sequencing: 11 non-alcoholic fatty liver controls (non-NAFL), 11 with fatty liver, and 23 with NASH. RESULTS: Our study showed that Parabacteroides distasonis and Alistipes putredenis were enriched in fatty liver but not in NASH patients. Notably, in a hierarchical clustering analysis, microbial profiles were differentially distributed among groups, and membership to a Prevotella copri dominant cluster was associated with a greater risk of developing NASH. Functional analyses showed that although no differences in LPS biosynthesis pathways were observed, Prevotella-dominant subjects had higher circulating levels of LPS and a lower abundance of pathways encoding butyrate production. CONCLUSIONS: Our findings suggest that a Prevotella copri dominant bacterial community is associated with a greater risk for NAFLD disease progression, probably linked to higher intestinal permeability and lower capacity for butyrate production.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Metagenoma , Lipopolissacarídeos , Prevotella/genética , Obesidade/complicações , Butiratos
7.
Mol Nutr Food Res ; 66(8): e2100838, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35142428

RESUMO

SCOPE: Genistein increases whole body energy expenditure by stimulating white adipose tissue (WAT) browning and thermogenesis. G-Coupled receptor GPR30 can mediate some actions of genistein, however, it is not known whether it is involved in the activation of WAT-thermogenesis. Thus, the aim of the study is to determine whether genistein activates thermogenesis coupled to an increase in WAT browning and mitochondrial activity, in GPR30+/+ and GPR30-/- mice. METHODS AND RESULTS: GPR30+/+ and GPR30-/- mice are fed control or high fat sucrose diets containing or not genistein for 8 weeks. Body weight and composition, energy expenditure, glucose tolerance, and browning markers in WAT, and oxygen consumption rate, 3', 5'-cyclic adenosine monophosphate (cAMP) concentration and browning markers in adipocytes are evaluated. Genistein consumption reduces body weight and fat mass gain in a different extent in both genotypes, however, energy expenditure is lower in GPR30-/- compared to GPR30+/+ mice, accompanied by a reduction in browning markers, maximal mitochondrial respiration, cAMP concentration, and browning markers in cultured adipocytes from GPR30-/- mice. Genistein improves glucose tolerance in GPR30+/+ , but this is partially observed in GPR30-/- mice. CONCLUSION: The results show that GPR30 partially mediates genistein stimulation of WAT thermogenesis and the improvement of glucose tolerance.


Assuntos
Tecido Adiposo Marrom , Genisteína , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal , Metabolismo Energético , Genisteína/metabolismo , Genisteína/farmacologia , Glucose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Termogênese/genética
8.
Food Res Int ; 151: 110856, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980392

RESUMO

Several studies have shown that consumption of honey is associated with various health benefits. However, there is scarce evidence on whether honeys modify the intestinal microbiota by preventing the inflammatory response in the host. Therefore, the aim of the present work was to study the effect of Melipona (Mel) and Mantequilla (Mtq) honeys, which contain different bioactive compounds and antioxidant capacity on gut microbiota and metabolic consequences in comparison with other sweeteners, in particular sucrose (S) and high fructose corn syrup (HFCS) in rats. The results of the present work showed that both honeys have polyphenols, flavonoids, antioxidant and bactericidal activities. Rats fed with both honeys gained less weight and body fat by increasing energy expenditure compared to S or HFCS and increased gene expression of antioxidant enzymes mediated by the transcription factor Nrf2. Analysis of the gut microbiota showed that consumption of both honeys modified the beta-diversity compared to those fed S or HFCS resulting in increased abundance of a specific cluster of bacteria of the Clostridium genus particularly Coprococcus eutactus, Defluviitalea saccharophila, Ruminicoccus gnavus and Ruminicoccus flavefaciens. As a result of the changes in the gut microbiota, there was a decrease in LPS- and TLR4-mediated low-grade inflammation and an increase in sIgA. Consumption of both honeys prevented glucose intolerance and increased adipocyte size compared to S or HFCS. In conclusion, consumption of MtqH or MelH can reduce metabolic endotoxemia by modifying the gut microbiota to prevent glucose intolerance.


Assuntos
Microbioma Gastrointestinal , Xarope de Milho Rico em Frutose , Mel , Animais , Abelhas , Inflamação/prevenção & controle , Ratos , Sacarose
9.
Front Oncol ; 12: 988968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591465

RESUMO

Introduction: Obesity has been associated with an increased risk of biologically aggressive variants in breast cancer. Women with obesity often have tumors diagnosed at later stages of the disease, associated with a poorer prognosis and a different response to treatment. Human cell lines have been derived from specific subtypes of breast cancer and have served to define the cell physiology of corresponding breast cancer subtypes. However, there are no current cell lines for breast cancer specifically derived from patients with different BMIs. The availability of those breast cancer cell lines should allow to describe and unravel functional alterations linked to these comorbidities. Methods: Cell cultures were established from tumor explants. Once generated, the triple negative subtype in a patient with obesity and a patient with a normal BMI were chosen for comparison. For cellular characterization, the following assays were conducted: proliferation assays, chemo - sensitivity assays for doxorubicin and paclitaxel, wound healing motility assays, matrix invasion assays, breast cancer cell growth to estradiol by chronic exposure to leptin, induction of endothelial permeability and tumorigenic potential in athymic mice with normo - versus hypercaloric diets with an evaluation of the epithelium - mesenchymal transformation proteins. Results: Two different cell lines, were established from patients with breast cancer: DSG-BC1, with a BMI of 21.9 kg/m2 and DSG-BC2, with a BMI of 31.5 kg/m2. In vitro, these two cell lines show differential growth rates, motility, chemosensitivity, vascular permeability, response to leptin with an activation of the JAK2/STAT3/AKT signaling pathway. In vivo, they displayed distinct tumorigenic potential. In particular, DSG-BC2, presented higher tumorigenicity when implanted in mice fed with a hypercaloric diet. Discussion: To our knowledge, these primary cultures are the first in vitro representation of both breast cancer and obesity. DSG - BC2 presented a more aggressive in vivo and in vitro phenotype. These results support the hypothesis that breast cancer generated in an obese metabolic state may represent a contrasting variant within the same disease. This new model will allow both further comprehension, functional studies and the analysis of altered molecular mechanisms under the comorbidity of obesity and breast cancer.

10.
Front Nutr ; 8: 666243, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368206

RESUMO

Chaya is an edible leaf popular in Mexico and Central America because of its high nutritional value. Studies in animal models have demonstrated the beneficial effects of Chaya, which include reduction of circulating lipids and increase in antioxidant activity. However, its hypolipidemic and antioxidant effects have not been demonstrated in humans. Thus, the aim of the present study was to evaluate the effect of Chaya on the lipid profile, lipid peroxidation, inflammation, and peripheral blood mononuclear cell gene expression in a population with dyslipidemia. We performed a single-arm trial in 30 participants with dyslipidemia who consumed 500 mL of Chaya beverage per day over a 6-week period. Interestingly, we observed a significant decrease in serum triglyceride concentration (P < 0.05) and an increase in plasma antioxidant activity and polyphenol concentration (P < 0.005) after 6 weeks of Chaya consumption. This was accompanied by a reduction in the oxidative stress marker MDA (P < 0.0001) and by an increase in the antioxidant enzyme CAT expression in peripheral blood mononuclear cells (P < 0.001). Altogether, our results demonstrate that consumption of Chaya has hypotriglyceridemic and antioxidant effects in subjects with dyslipidemia.

11.
Int J Obes (Lond) ; 45(11): 2471-2481, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34331001

RESUMO

BACKGROUND: Dietary bioactive compounds have been demonstrated to produce several health benefits. Genistein, an isoflavone of soy protein, and resveratrol, a polyphenol from grapes, have been shown to improve insulin sensitivity and to stimulate white adipose tissue (WAT) browning, leading to increased energy expenditure. However, it has not been demonstrated in humans whether genistein or resveratrol have the capacity to stimulate the differentiation of stromal vascular fraction (SVF) cells from white fat into beige adipocytes. SUBJECTS/METHODS: With this aim, we assessed whether stromal vascular fraction cells obtained from biopsies of the subdermal fat depots of subjects with normal body weight (NW) or from subjects with overweight/obesity with (OIR) or without (OIS) insulin resistance were able to differentiate into the beige adipose tissue lineage in vitro, by exposing the cells to genistein, resveratrol, or the combination of both. RESULTS: The results showed that SVF cells obtained from NW or OIS subjects were able to differentiate into beige adipocytes according to an increased expression of beige biomarkers including UCP1, PDRM-16, PGC1α, CIDEA, and SHOX2 upon exposure to genistein. However, SVF cells from OIR subjects were unable to differentiate into beige adipocytes with any of the inducers. Exposure to resveratrol or the combination of resveratrol/genistein did not significantly stimulate the expression of browning markers in any of the groups studied. We found that the non-responsiveness of the SVF from subjects with obesity and insulin resistance to any of the inducers was associated with an increase in the expression of endoplasmic reticulum stress markers. CONCLUSION: Consumption of genistein may stimulate WAT browning mainly in NW or OIS subjects. Thus, obesity associated with insulin resistance may be considered as a condition that prevents some beneficial effects of some dietary bioactive compounds.


Assuntos
Adipócitos Bege/fisiologia , Diferenciação Celular/efeitos dos fármacos , Genisteína/farmacologia , Resistência à Insulina/fisiologia , Fração Vascular Estromal/fisiologia , Adulto , Diferenciação Celular/fisiologia , Feminino , Humanos , Masculino , Psicometria/instrumentação , Psicometria/métodos , Fração Vascular Estromal/metabolismo , Inquéritos e Questionários
12.
J Nutr Biochem ; 94: 108751, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33915261

RESUMO

Diets rich in mono or polyunsaturated fats have been associated with a healthy phenotype, but there is controversial evidence about coconut oil (CO), which is rich in saturated medium-chain fatty acids. Therefore, the purpose of the present work was to study whether different types of oils rich in polyunsaturated (soybean oil, SO), monounsaturated (olive oil, OO), or saturated fatty acids (coconut oil, CO) can regulate the gut microbiota, insulin sensitivity, inflammation, mitochondrial function in wild type and PPARα KO mice. The group that received SO showed the highest microbial diversity, increase in Akkermansia muciniphila, high insulin sensitivity and low grade inflammation, The OO group showed similar insulin sensitivity and insulin signaling than SO, increase in Bifidobacterium, increase in fatty acid oxidation and low grade inflammation. The CO consumption led to the lowest bacterial diversity, a 9-fold increase in the LPS concentration leading to metabolic endotoxemia, hepatic steatosis, increased lipogenesis, highest LDL-cholesterol concentration and the lowest respiratory capacity and fatty acid oxidation in the mitochondria. The absence of PPARα decreased alpha diversity and increased LPS concentration particularly in the CO group, and increased insulin sensitivity in the groups fed SO or OO. These results indicate that consuming mono or polyunsaturated fatty acids produced health benefits at the recommended intake but a high concentration of oils (three times the recommended oil intake in rodents) significantly decreased the microbial alpha-diversity independent of the type of oil.


Assuntos
Óleo de Coco/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Azeite de Oliva/farmacologia , PPAR alfa/metabolismo , Óleo de Soja/farmacologia , Animais , Bactérias/classificação , Bactérias/genética , Células Cultivadas , Biologia Computacional , DNA Bacteriano/genética , Fezes/química , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Intolerância à Glucose , Hepatócitos/efeitos dos fármacos , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , PPAR alfa/genética , RNA Bacteriano/genética , RNA Ribossômico 16S , Distribuição Aleatória , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
13.
Sci Rep ; 11(1): 5222, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664364

RESUMO

The malignant energetic demands are satisfied through glycolysis, glutaminolysis and de novo synthesis of fatty acids, while the host curses with a state of catabolism and systemic inflammation. The concurrent inhibition of both, tumor anabolism and host catabolism, and their effect upon tumor growth and whole animal metabolism, have not been evaluated. We aimed to evaluate in colon cancer cells a combination of six agents directed to block the tumor anabolism (orlistat + lonidamine + DON) and the host catabolism (growth hormone + insulin + indomethacin). Treatment reduced cellular viability, clonogenic capacity and cell cycle progression. These effects were associated with decreased glycolysis and oxidative phosphorylation, leading to a quiescent energetic phenotype, and with an aberrant transcriptomic landscape showing dysregulation in multiple metabolic pathways. The in vivo evaluation revealed a significant tumor volume inhibition, without damage to normal tissues. The six-drug combination preserved lean tissue and decreased fat loss, while the energy expenditure got decreased. Finally, a reduction in gene expression associated with thermogenesis was observed. Our findings demonstrate that the simultaneous use of this six-drug combination has anticancer effects by inducing a quiescent energetic phenotype of cultured cancer cells. Besides, the treatment is well-tolerated in mice and reduces whole animal energetic expenditure and fat loss.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Metabolismo Energético/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Daunorrubicina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Hormônio do Crescimento/farmacologia , Humanos , Indazóis/farmacologia , Indometacina/farmacologia , Insulina/farmacologia , Metabolismo/efeitos dos fármacos , Camundongos , Mitoxantrona/farmacologia , Orlistate/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Vincristina/farmacologia
14.
EMBO Rep ; 22(5): e50766, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33749979

RESUMO

SIRT7 is a NAD+ -dependent deacetylase that controls important aspects of metabolism, cancer, and bone formation. However, the molecular targets and functions of SIRT7 in the kidney are currently unknown. In silico analysis of kidney transcripts of the BXD murine genetic reference population revealed a positive correlation between Sirt7 and Slc12a7 mRNA expression, suggesting a link between the corresponding proteins that these transcripts encode, SIRT7, and the K-Cl cotransporter KCC4, respectively. Here, we find that protein levels and activity of heterologously expressed KCC4 are significantly modulated depending on its acetylation status in Xenopus laevis oocytes. Moreover, SIRT7 interacts with KCC4 in a NAD+ -dependent manner and increases its stability and activity in HEK293 cells. Interestingly, metabolic acidosis increases SIRT7 expression in kidney, as occurs with KCC4. In contrast, total SIRT7-deficient mice present lower KCC4 expression and an exacerbated metabolic acidosis than wild-type mice during an ammonium chloride challenge. Altogether, our data suggest that SIRT7 interacts with, stabilizes and modulates KCC4 activity through deacetylation, and reveals a novel role for SIRT7 in renal physiology.


Assuntos
Sirtuínas , Simportadores , Acetilação , Animais , Células HEK293 , Humanos , Rim , Camundongos , Sirtuínas/genética , Sirtuínas/metabolismo , Simportadores/genética , Simportadores/metabolismo , Cotransportadores de K e Cl-
15.
Metabolism ; 116: 154705, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33422545

RESUMO

The preservation of body proteins is essential to guarantee their functions in organisms. Therefore, the utilization of amino acids as energy substrates is regulated by a precise fine-tuned mechanism. Recent evidence suggests that the transcription factors peroxisome proliferator-activated receptor alpha (PPARα) and hepatocyte nuclear factor 4 alpha (HNF4α) are involved in this regulatory mechanism. Thus, the aim of this study was to determine how these transcription factors interact to regulate the expression of amino acid catabolism genes. In vivo studies using PPARα-knockout mice (Pparα-null) fed different amounts of dietary protein showed that in the absence of PPARα, there was a significant increase in HNF4α abundance in the liver, which corresponded with an increase in amino acid catabolizing enzyme (AACE) expression and the generation of increased amounts of postprandial urea. Moreover, this effect was proportional to the increase in dietary protein consumed. Chromatin immunoprecipitation assays showed that HNF4α can bind to the promoter of AACE serine dehydratase (SDS), an effect that was potentiated by dietary protein in the Pparα-null mice. The mechanistic studies revealed that the presence of retinoid X receptor alpha (RXRα) is essential to repress HNF4α activity in the presence of PPARα, and this interaction accelerates HNF4α degradation via the proteasome pathway. These results showed that PPARα can downregulate liver amino acid catabolism in the presence of RXRα by inhibiting HNF4α activity.


Assuntos
Aminoácidos/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Fígado/metabolismo , PPAR alfa/fisiologia , Receptor X Retinoide alfa/fisiologia , Animais , Regulação para Baixo/genética , Células HEK293 , Células Hep G2 , Humanos , Masculino , Metabolismo/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Receptor X Retinoide alfa/genética
16.
Nutrients ; 14(1)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-35010897

RESUMO

Obesity is associated with cognitive deficit and liver alterations; however, it remains unclear whether a combination of functional foods could reverse cognitive damage and to what extent it would be associated with changes in gut microbiota and liver. With this aim, male Wistar rats were fed a high-fat-5%sucrose diet (HFS) for 4 mo. And were then fed for 1 mo. with bioactive foods. At the end of this period, liver, serum, feces, intestine, and brain samples were taken. Body composition, energy expenditure, LPS, hormones, intraperitoneal glucose tolerance test, behavioral tests, and gut microbiota were evaluated. We showed that male rats fed high-fat-sucrose diet developed gut microbiota dysbiosis, increased in body fat, decreased antioxidant activity, decreased brain neuropeptide Y, increased the number of astrocytes and activated microglia, along with reduced spine density associated with deficits in working memory. Ingestion of a combination of nopal, soy protein, curcumin, and chia seed oil (bioactive foods) for three months was associated with an increase in a cluster of bacteria with anti-inflammatory capacity, a decrease in serum LPS levels and an increase in serum eicosapentaenoic acid (EPA) with neuroprotective properties. In the liver, ingestion of bioactive food significantly increased antioxidant enzymes, decreased lipogenesis, reduced inflammation mediated by the TLR4-TNFα pathway along with a decrease in body fat, glucose intolerance, and metabolic inflexibility. Finally, neuroinflammation in the brain was reduced and working memory improved. Our study demonstrates that consumption of bioactive foods was associated with reduced liver, brain, and gut microbiota alterations in obese rats.


Assuntos
Encéfalo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/administração & dosagem , Sacarose Alimentar/efeitos adversos , Alimentos/classificação , Fígado/metabolismo , Animais , Antioxidantes , Bactérias/efeitos dos fármacos , Bactérias/genética , Composição Corporal , Microbioma Gastrointestinal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Intolerância à Glucose , Resistência à Insulina , Masculino , Ocludina/genética , Ocludina/metabolismo , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
17.
J Ren Nutr ; 31(1): 73-79, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32709427

RESUMO

OBJECTIVE: There is not enough information on the classification of oxalate content in several foods, particularly in ethnic foods, to recommend their consumption in subjects with urolithiasis (UL). The objective of the present study was to generate reliable information on the oxalate content and antioxidant activity in different foods and classify them by very low, low, medium, high and very high oxalate content and antioxidant activity. METHODS: The oxalate content of 109 foods including ethnic foods was assessed by an enzymatic assay, and the antioxidant activity was measured by the oxygen radical absorbance capacity to determine the oxalate/antioxidant activity ratio. Oxalate consumption was then evaluated in 400 subjects with overweight and obesity using 24-h dietary recalls. RESULTS: The main foods with high oxalate content were raw spinach, huanzontle, purslane, chard, almond, and toasted and sweetened roasted amaranth. The highest antioxidant activity was found in strawberries, all types of chocolates, roselle, morita peppers, and pinolillo. Subjects with overweight or obesity exceed the dietary oxalate daily intake recommendation. CONCLUSIONS: The classification of foods by their oxalate content and antioxidant activity will be very useful to generate nutritional recommendation in different diseases, mainly UL.


Assuntos
Antioxidantes/análise , Dieta/métodos , Etnicidade , Análise de Alimentos/métodos , Sobrepeso/metabolismo , Oxalatos/análise , Adulto , Idoso , Antioxidantes/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxalatos/metabolismo , Capacidade de Absorbância de Radicais de Oxigênio , Adulto Jovem
18.
Food Funct ; 11(12): 10341-10350, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33200762

RESUMO

The black bean is a legume widely consumed in Latin America, however its consumption has decreased significantly in recent decades. There is evidence that its consumption generates beneficial health effects due in part to the type of protein, resistant starches and polyphenols. Thus, their use in food formulation could impact health status. Therefore, the purpose of the present work was to evaluate the effects of the consumption of a bean protein concentrate (BPC) and a whole cooked bean flour (WCB) on body composition, glucose metabolism and energy expenditure in Wistar rats fed a control diet or high-fat diets with 5% sucrose in the drinking water. With this aim, rats were fed the experimental diets for 10 weeks. The results showed that consumption of either BPC or WCB reduced weight gain and body fat despite the consumption of a high-fat diet. This change was associated with a significant increase in energy expenditure and the capacity to adapt fuel oxidation to fuel availability. As a result, rats fed a bean-based diet had lower circulating glucose and insulin concentrations and normal glucose tolerance, which was associated with decreased expression of lipogenic genes in the liver. These results suggest that the type of protein and bioactive compounds particularly phenolic and flavonoid compounds present in BPC are suitable to improve the formulations used in dietary strategies for subjects with obesity or type 2 diabetes. The addition of legumes to the diet of subjects with insulin resistance, including black beans, could improve their metabolic status.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Lipogênese/efeitos dos fármacos , Proteínas de Plantas/análise , Tecido Adiposo/metabolismo , Animais , Composição Corporal , Peso Corporal , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético , Fabaceae , Regulação da Expressão Gênica , Teste de Tolerância a Glucose , Insulina/metabolismo , Lipogênese/genética , Fígado/metabolismo , Masculino , Obesidade/metabolismo , Ratos , Ratos Wistar , Sacarose/metabolismo , Triglicerídeos/metabolismo , Aumento de Peso
19.
Artigo em Inglês | MEDLINE | ID: mdl-32152146

RESUMO

OBJECTIVE: Obesity is associated with metabolic abnormalities, including insulin resistance and dyslipidemias. Previous studies demonstrated that genistein intake modifies the gut microbiota in mice by selectively increasing Akkermansia muciniphila, leading to reduction of metabolic endotoxemia and insulin sensitivity. However, it is not known whether the consumption of genistein in humans with obesity could modify the gut microbiota reducing the metabolic endotoxemia and insulin sensitivity. RESEARCH DESIGN AND METHODS: 45 participants with a Homeostatic Model Assessment (HOMA) index greater than 2.5 and body mass indices of ≥30 and≤40 kg/m2 were studied. Patients were randomly distributed to consume (1) placebo treatment or (2) genistein capsules (50 mg/day) for 2 months. Blood samples were taken to evaluate glucose concentration, lipid profile and serum insulin. Insulin resistance was determined by means of the HOMA for insulin resistance (HOMA-IR) index and by an oral glucose tolerance test. After 2 months, the same variables were assessed including a serum metabolomic analysis, gut microbiota, and a skeletal muscle biopsy was obtained to study the gene expression of fatty acid oxidation. RESULTS: In the present study, we show that the consumption of genistein for 2 months reduced insulin resistance in subjects with obesity, accompanied by a modification of the gut microbiota taxonomy, particularly by an increase in the Verrucomicrobia phylum. In addition, subjects showed a reduction in metabolic endotoxemia and an increase in 5'-adenosine monophosphate-activated protein kinase phosphorylation and expression of genes involved in fatty acid oxidation in skeletal muscle. As a result, there was an increase in circulating metabolites of ß-oxidation and ω-oxidation, acyl-carnitines and ketone bodies. CONCLUSIONS: Change in the gut microbiota was accompanied by an improvement in insulin resistance and an increase in skeletal muscle fatty acid oxidation. Therefore, genistein could be used as a part of dietary strategies to control the abnormalities associated with obesity, particularly insulin resistance; however, long-term studies are needed.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fármacos Antiobesidade/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Genisteína/administração & dosagem , Resistência à Insulina , Músculo Esquelético/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/microbiologia , Método Duplo-Cego , Ácidos Graxos/metabolismo , Humanos , Músculo Esquelético/metabolismo
20.
Metabolism ; 103: 154048, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31843339

RESUMO

OBJECTIVE: Angiotensin-(1-7) [Ang-(1-7)], a component of the renin angiotensin system, is a vasodilator that exerts its effects primarily through the Mas receptor. The discovery of the Mas receptor in white adipose tissue (WAT) suggests an additional role for this peptide. The aim of the present study was to assess whether Ang-(1-7) can induce the expression of thermogenic genes in white adipose tissue and increase mitochondrial respiration in adipocytes. MATERIALS/METHODS: Stromal Vascular fraction (SVF)-derived from mice adipose tissue was stimulated for one week with Ang-(1-7), then expression of beige markers and mitochondrial respiration were assessed. Mas+/+ and Mas-/- mice fed a control diet or a high fat-sucrose diet (HFSD) were exposed to a short or long term infusion of Ang-(1-7) and body weight, body fat, energy expenditure, cold resistance and expression of beige markers were assessed. Also, transgenic rats overexpressing Ang-(1-7) were fed with a control diet or a high fat-sucrose diet and the same parameters were assessed. Ang-(1-7) circulating levels from human subjects with different body mass index (BMI) or age were measured. RESULTS: Incubation of adipocytes derived from SVF with Ang-(1-7) increased the expression of beige markers. Infusion of Ang-(1-7) into lean and obese Mas+/+mice also induced the expression of Ucp1 and some beige markers, an effect not observed in Mas-/- mice. Mas-/- mice had increased body weight gain and decreased cold resistance, whereas rats overexpressing Ang-(1-7) showed the opposite effects. Overexpressing rats exposed to cold developed new thermogenic WAT in the anterior interscapular area. Finally, in human subjects the higher the BMI, low circulating concentration of Ang-(1-7) levels were detected. Similarly, the circulating levels of Ang-(1-7) peptide were reduced with age. CONCLUSION: These data indicate that Ang-(1-7) stimulates beige markers and thermogenesis via the Mas receptor, and this evidence suggests a potential therapeutic use to induce thermogenesis of WAT, particularly in obese subjects that have reduced circulating concentration of Ang-(1-7).


Assuntos
Tecido Adiposo Bege/efeitos dos fármacos , Angiotensina I/farmacologia , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Termogênese/efeitos dos fármacos , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Adulto , Animais , Respiração Celular/efeitos dos fármacos , Respiração Celular/genética , Células Cultivadas , Metabolismo Energético/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Ratos , Ratos Transgênicos , Receptores Acoplados a Proteínas G/genética , Termogênese/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA